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Abstract

A graph algorithm with a hostile partner is a game played between two players,
Alice and Bob. In each game Alice and Bob take it in turns to construct some
object. Alice wins if the object has a specific property, and Bob wins if it doesn’t.
In this report we will explore a variety of games along with variations that allow
Alice and Bob to play more than once per turn. We will also examine various
strategies for both Alice and Bob. And, for each stategy we will see under what
conditions Alice or Bob will always win. The four main games we will consider
are; the dominating game, the independent dominating game, the colouring game,
and the marking game.
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Chapter 1

Introduction

1.1 Graphs

In 1736 the city of Kaliningrad, Russia was known as Königsberg and was part of the now
defunct Kingdom of Prussia. Königsberg lay on either side of the Pregel river. The only way
to cross the river was by a series of seven bridges. The bridges connected two large islands
and are arranged as in figure 1.1.

Figure 1.1: The bridges of Königsberg

(Image courtesy of Dillion Mayhew)

The Bridges of Königsberg Problem involves finding a way to travel around the city in a way
that crosses each bridge exactly once. This problem attracted the attention of Leonhard
Euler. Euler noticed that the path through the land masses didn’t matter. So to simplify
the problem we replace each land mass with a single point (called a vertex) and draw a line
(called an edge) between two landmasses if they are connected by a bridge. We now have the
representation in figure 1.2, we call this representation a graph. Now the problem is to find
a way to travel along each edge exactly once. Euler noticed that apart from the first and
last vertex every time we enter a vertex we must also leave it. Thus the number of times we
enter a vertex is the same as the number of times we leave. So, all bar two vertices must be
connected be an even number of bridges. But in our graph,1 each vertex has an odd number
of edges. This means that any path will always get stuck somewhere. Euler concludes that
the bridges of Königsberg problem has no solution.

Euler noted that many problems have similar abstractions. Such abstractions are known as
graphs and form the basis for graph theory. More generally, a graph G = (V,E) consists
of a set of vertices, V (G), and a set of edges, E(G). Each edge connects two vertices and
is represented as a pair of vertices. For example in figure 1.3 we have three edges (a, b),
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Figure 1.2: The bridges of Königsberg simplified

(Image courtesy of Dillion Mayhew)

(a, c), and (b, c). There are two main types of graphs we consider, directed graphs where
the direction of the edge matters ((a, b) 6= (b, a)) and undirected graphs where the direction
doesn’t matter ((a, b) = (b, a)).

a b

c

Figure 1.3: An undirected graph with three vertices and three edges

One use of graphs is to represent relationships between objects. They do this in a way that
is easy to visualise and analyse. An example from recent events is COVID-19, and more
generally infectious diseases. Suppose we are in charge of monitoring an outbreak in a small
country. We have a list of all the people who have contracted COVID-19. To represent the
problem we consider a graph. We consider people as vertices in the graph and there to be
an edge between two people if the disease could spread between them. Then by colouring
infected vertices we can easily visualise things like, who is the most infectious (who has
the most infected neighbours), and where is community transmission occurring (a group of
infections that are disconnected from the rest of the infections).

1.2 Graph Algorithms

A graph algorithm is a set of instructions that define some procedure on a graph. An
algorithm can be as simple as finding a vertex of even degree. Or more complicated, as
when colouring all the vertices using only a finite number of colours.

Suppose we are charged with laying fibre optic cable in a neighbourhood. Our goal is to
connect all the houses as cheaply as possible. We can use a graph to model the relationship
between houses. We consider the houses as vertices and there to be edge between two vertices
if it is possible to lay cable between the corresponding houses. It costs different amounts to
lay cable between different houses. This is because some houses are further apart, have water
between them, have harder soil, etc. We associate each edge with a number representing the
cost of laying cable between the two corresponding houses. This forms what is known as a
weighted graph. We now have all the information needed to lay cable. The first step is to lay
cable between the corresponding houses at the edge with the least cost. Next we lay cable
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between the corresponding houses at the edge with the least cost such that laying cable at
this edge will not introduce a cycle (a closed path) of cable. By repeating this last step,
eventually we will have laid enough cable to connect all the houses. Further, the cable we
laid will have the least possible cost. These steps are an example of a graph algorithm. This
particular algorithm is called Kruskal’s algorithm.

1.3 Graph Games

We introduce the idea of a graph game by considering two related problems, the Dinner Party
Problem and the Dinner Party Game Problem.

Suppose Alice is hosting a dinner party, and all the guests are mingling happily. However,
the guests are hungry and need to be fed. But, they are lazy and will not move to collect
food. When serving, food platters are placed around the room next to particular guests. A
guest will take some food if there is a platter within arm’s reach. Alice needs to place platters
in such a way that every guest can reach a platter. The food is expensive. So, Alice wants
to place the smallest number of platters possible. The dinner party problem is, what is the
smallest number of platters that Alice needs to feed everybody?

After the success of the first party, Alice decides to host another party. To alleviate the
pressure of hosting she decides to hire a caterer, Bob. As before, the platters are placed
around the room. A guest will take some food if there is a platter within arms reach. Starting
with Alice and on alternating turns Alice and Bob place a single platter. This continues until
all the guests are within arms reach of a platter. As before, Alice tries to use the smallest
number of platters possible. Bob on the other hand makes a profit for every platter and so
will try to place as many platters as possible. Bob is being paid by Alice. So, every platter
he places must feed at least one new person. If not, then Alice would fire Bob. If Bob was
to always place a platter such that it would feed the least number of people, then the total
number of platters placed would be greater than the first party. Hence, Alice requires some
strategy to minimise the number of platters placed. The Dinner Party Game Problem is then,
what is the smallest number of platters that Alice can guarantee will always feed everyone?
We further explore this idea in the context of the domination game and the game domination
number in Chapter 2.

It is easy to see how this concept could be applied to other situations. For example, in
wartime a nation may be trying to destroy railroads, using the minimum number of bombs
possible, but their allies are secretly colluding with the enemy. Such an ally would try to make
it as costly as possible to destroy railroads. Other examples include a measure of robustness
in network infrastructure, scheduling, and register allocation.

1.4 Report

The Diner Party Problem is a specific example of trying to find what is known as a minimal
dominating set. To find such a set Alice would employ some algorithm. Such an algorithm
may not be efficient but would solve the Dinner Party Problem. In the Dinner Party Game
Problem, Bob is trying to assert his will over this algorithm. Hence, we have a hostile parter
as part of our graph algorithm. When the hostile partner (Bob) is included the algorithm
will no longer solve the problem. By including Bob we have turned the problem into a game.

In this report we explore four different graph algorithms with hostile partners. These are:
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� Dominating Game (Section 2.2):
Alice and Bob take turns building a dominating set.

� Independent Dominating Game (Section 2.4):
Alice and Bob take turns building a maximal independent set.

� Colouring Game (Section 3.2):
Alice and Bob take turns colouring a graph.

� Marking Game (Section 3.3):
Alice and Bob take turns ordering the vertices of a graph.

In chapter 2 we explore the dominating and the independent dominating games. To begin,
we formally define the dominating game. We then introduce upper and lower bounds for
some classes of graphs. To bound these classes we provide some explicit strategies for Alice.
We then extend the game to allow Alice and Bob to play more than once per turn. Finally,
we consider some bounds in the independent dominating game.

In chapter 3 we explore the colouring and marking games. We begin by exploring the standard
colouring game. This game is then extended to a version where Alice and Bob play more than
once per turn. We then provide lower bounds for the colouring game. The marking game
is then introduced as a way to bound the colouring game. To do this we use the activation
strategy. We conclude chapter 3 with a brief look at the current best bound for the class of
planar graphs.

1.5 Some Notation and Definitions

Before we move on we make a note of some notation and definitions that are common through-
out all the games.

All the graphs we have discussed so far are undirected. A directed graph is a graph in which
each edge is assigned a direction. In such a graph the edges are not symmetric. That is,
the edge (a, b) is not the same as the edge (b, a). An undirected graph can be turned into
a directing graph by assigning each edge a direction. For example, in figure 1.4 we directed
the graph from figure 1.3.

a b

c

Figure 1.4: A directed graph

In a game, whenever Alice or Bob has their turn by choosing a vertex v we say they play
the vertex v. For example, in the colouring game a play is when Alice chooses a vertex and
assigns it a colour. A round is a play of both Alice and Bob.

At any stage in the game we can consider the sequence in which the vertices were played,
along with the graph we are playing on. This pair forms a snapshot of the game detailing all
the pertinent information. The size of number of played vertices tells you whose turn it is
(Alice’s if even and Bob’s if odd). This snapshot is called a game state.
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Definition 1.1 (Game State). Let G = (V,E) be a graph. A game state for G a sequence
〈vn〉 of vertices in V such that each vertex appears at most once.

A strategy for some game is a prescribed next move for every possible game state. In other
words a strategy tells a player exactly how to play the game. We define a strategy as a
function from game states to game states. Note that the following definition only makes
sense for games in which the players only pick vertices. For example in the colouring game
the players assign colours to vertices. Hence, the strategy and game state would need to take
this extra information into account. To allow us to a have a single definition, we omit this
extra detail.

Definition 1.2 (Strategy). For G = (V,E) a graph and σ = 〈vn〉 a game state for G let

ϕG : V (G)<N → V (G)<N

where V (G)<N denotes the set of all sequences of vertices in V . ϕG is a strategy if it is defined
on any game state and ϕG(σ) = 〈v0, v1, . . . , vn−1, u〉, such that u ∈ V is a legal move in the
game.

A strategy for Alice is a strategy that is only defined on game states where it is Alice’s turn.
Equivalently, a strategy for Bob is a strategy that is only defined on game states where is
Bob’s turn.

For some fixed win condition a winning strategy for Alice is a strategy that guarantees that
the game will end with Alice winning. Similarly, a winning strategy for Bob is a strategy
that guarantees the game will end with Bob winning.

The formalisation of strategies provides good background to the various games. However, to
simplify proofs and intuition we will not explicitly define strategies as functions. Rather, we
will define the functions implicitly.

5



6



Chapter 2

Graph Domination

2.1 Introduction

In chapter 1 we introduced the Dinner Party Problem. To formalize the Dinner Party Problem
in the language of graphs we introduce the concept of a dominating set. The Dinner Party
Problem can be thought of as a graph game where Alice and Bob are building a dominating
set in the graph of guests. A guest is in the dominating set if a platter has been placed next
to them. A guest is dominated if they are within arms reach of a platter. The game continues
until every guest is dominated (i.e. fed).

Definition 2.1 (Dominating Set). Let G be a graph. A dominating set D of G = (V,E) is
a subset of V such that every vertex in V is either in D or is adjacent to at least one vertex
in D.

Definition 2.2 (Domination Number). Let G be a graph. The domination number of G,
γ(G), is the minimum size of a dominating set in G.

One way of visualising dominating sets is to consider cell tower placement. Suppose we wish
to build a 5G network in a city. We consider a graph of buildings in a city. The vertices are
buildings and two vertices u and v are connected if a 5G tower placed on building u one will
provide coverage to building v. A set of buildings that would provide coverage to the whole
city is a dominating set. The minimum number of towers needed is the domination number
of this graph.

The size of a minimum dominating set is in some sense a measure of how closely connected
a graph is. A graph with a low domination number is densely connected, and a graph with
a high domination number is loosely connected. For example, a city that is densely packed
requires fewer towers. Every new 5G tower reaches many buildings. Whereas, a sparsely
populated city will require more towers. Each tower services only a few buildings.

As a further example, consider the wheel graph W9 and the cycle graph C8 in figures 2.1 and
2.2. The wheel has a dominating set of size 1, just the centre vertex. Whereas, the cycle
graph has a dominating set of size 3. In figures 2.1 and 2.2 the dominating sets are denoted
as black vertices. This can be interpreted as the wheel graph being more closely connected
than the cycle graph. And, when you observe the graphs this distinction makes sense.

The dominating game was introduced by Brešar, Klavžar, and Rall 2010 [5]. In the domi-
nating game Alice and Bob take turns adding vertices to a set until it forms a dominating
set.
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Figure 2.1: The wheel graph W9 Figure 2.2: The cycle graph C7

In this chapter we will show how the dominating game is bounded in terms of both the
number of vertices and the domination number.

2.2 The Dominating game

For a graph G = (V,E) and a set X ⊆ V we denote N [X] the set of neighbours of X including
X. That is N [X] = {v ∈ V : ∃u∈X(u, v) ∈ E} ∪X.

We define the dominating game as follows. Let G be a graph, t a target score, and D a
dominating set that we initialise to D = ∅. On alternating turns, beginning with Alice, Alice
and Bob add an unchosen vertex to D such that the number of dominated vertices increases.
That is, the set N [D] increases in size. The game stops when D forms a dominating set in
G. The score of the game, s, is the size of the dominating set at the end of the game. That
is s = |D|. Alice wins if s ≤ t and Bob wins otherwise.

Definition 2.3 (Game Domination Number). Let G be a graph. The game domination
number γg(G) is the minimum target score such that Alice has a winning strategy.

Let C be a class of graphs. γg(C) is the smallest k such that for every graph H ∈ C, γg(H) ≤ k.
We say a class C is bounded above by k if γg(C) ≤ k. C is bounded below by k if there is a
graph H ∈ C such that γg(H) = k and we write k ≤ γg(C). Hence, if k ≤ γg(C) ≤ k then
γg(C) = k.

2.2.1 Lower Bounds for the Game Domination Number

A graph G = (E, V ) has no dominating sets smaller than γ(G). This means that if the target
score of the dominating game is less than γ(G) then there is no strategy that will allow Alice
to win. Therefore γ(G) is a lower bound for the game domination number. That is

γ(G) ≤ γg(G)

Theorem 2.4, is a well known result in graph theory.

Theorem 2.4 (Ore 1962 [15]). For any connected graph G with no isolated vertices and n
vertices,

γ(G) ≤ n

2

In this report we will show that theorem 2.4 also provides us with a lower bound for the game
domination number. But, before we can show n/2 is a lower bound we introduce lemmas 2.5
and 2.6.
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Lemma 2.5. For every n > 1 there exists a connected graph G with n vertices such that
γ(G) = bn/2c. Hence the bound γ(G) ≤ n

2 is tight

Proof. Fix n > 1. If n is odd then it suffices to show γ(G) ≤ (n − 1)/2. So, without loss
of generality suppose n is even. Consider the path graph with n/2 vertices with a single
additional vertex attached to each vertex, denote this graph G. See figure 2.3.

Figure 2.3: The extended path graph, G, with 10 vertices

A minimum dominating set in G is the set of vertices in the original path graph. Hence
γ(G) = n/2. Therefore n/2 is a tight upper bound for γ(C).

Lemma 2.6 and theorem 2.7 are implicit in the literature. But, we state them here with
proofs.

Lemma 2.6. Let C be a class of graphs and γ(C) tight upper bound for the domination number
of C. That is, for all G ∈ C, γ(G) ≤ γ(C) and there exists some G ∈ C such that γ(G) = γ(C).
Then,

γ(C) ≤ γg(C)

Proof. Let C be a class of graphs and G ∈ C a graph such that γ(G) = γ(C). G has no
dominating sets with less than γ(C) vertices. Thus there is no winning strategy for Alice
with a target score less than γ(C). Therefore γ(C) ≤ γg(C)

Theorem 2.7. Let G be a connected graph with n vertices, such that n ≥ 4. Then, there is
a winning strategy for Alice with

n

2
≤ γg(G)

Proof. Let G be a connected graph with n vertices. By lemma 2.5 theorem 2.4 is a tight
upper bound. Therefore by theorems 2.4 and 2.6, n/2 ≤ γg(G).

Theorem 2.7 does not say that for all connected graphs with domination number less than
n/2, Alice will always lose. But, rather a target score greater than n/2 is needed to ensure
Alice will always win on any arbitrary connected graph. As an example, consider the path
graph Pn. That, is the graph with n vertices connected in a single line. Let D be the

Figure 2.4: The path graph P8

current partial dominating set in the dominating game. In Pn any vertex that Alice plays
will increase the number of dominated vertices (N [D]) by at most 3. Bob can play a vertex
in N(D). Doing this will increase the size of N [D] by at most 1. Hence, after each round
N(D) has increased by at most 4 and D has increased by 2. Therefore the game will end
after n/4 turns with |D| = 2(n/4) = n/2. Hence a target score of n/2 is needed to ensure
that Alice will win.
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2.2.2 Upper bounds for Game Domination Number

Consider some graph G = (V,E), the vertex set V is a dominating set. Therefore when D
forms a dominating set |D| ≤ |V (G)|. Thus a game with target score |V (G)| guarantees Alice
will win. Hence |V (G)| is an upper bound for the game domination number. That is,

γg(G) ≤ |V (G)|

For a better upper bound we introduce a new strategy for Alice. This strategy involves
Alice imagining a perfect play and using this play as a strategy. Alice imagines a minimum
dominating set and plays only these vertices. This simple strategy and the following bound
were first observed in Brešar and Klavžar and Rall 2010 [5]. If Alice was playing herself
this minimum dominating set would provide a perfect score (γg(G) = γ(G)). However, Alice
is not playing herself. Bob’s strategy forces a less than perfect score. But, by playing her
imagined strategy she will always win on a score strictly less than twice her perfect score.

Theorem 2.8 (Brešar and Klavžar and Rall 2010 [5]). For G a graph and γ(G) the domi-
nating number of G,

γg(G) < 2γ(G)

In [5] the authors do not give a formal proof, they give a brief sketch. This is something we
aim to remedy.

Proof. Let G be a graph and X ⊆ V (G) a dominating set such that |X| = γ(G). On Alice’s
first turn she plays any vertex in X. Now suppose Bob has just played a vertex and D is the
current partial dominating set. Alice’s strategy is to play any unchosen vertex, v ∈ X \D.
As X is a dominating set and Alice plays a vertex from X in each round, after no more than
γ(G) rounds the game must have ended.

If the game ends in the γ(G)-th round then it ended on Alice’s turn. This is because after
Alice’s γ(G)-th turn the game is over. Thus Bob has had one less turn that Alice. In each
round Alice and Bob each add one vertex to D. Hence the game ends with size of D exactly
2γ(G)− 1.

If the game ends in strictly less than γ(G) rounds then the size of D is strictly less than
2γ(G).

If the domination number of a class of graphs is known, then we know an upper bound for the
game domination number. However, the domination number of most classes of graphs is not
known. This is because finding dominating numbers is difficult. But, if an upper bound for
the domination number is known we can still get an upper bound for the game domination
number. Alice pretends that the domination number is its upper bound. Alice’s strategy
would be exactly the same as in theorem 2.8. This means that we can get an improvement
on the upper bound of the domination number by finding better upper bounds for the game
domination number. However, finding bounds for the dominating number is beyond the scope
of this report.

2.2.3 The Domination number in Trees

Finding better bounds for the class of all graphs is a difficult problem. But for other, smaller,
classes of graphs better bounds have be found.

Definition 2.9 (Forest). A graph is a forest if it contains no cycles.
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Definition 2.10 (Tree). A graph is a tree if it is connected and contains no cycles.

For the class of trees Kinnersley, West, and Zamani 2013 [14] conjectured the following.

Conjecture 2.11 (3/5-Conjecture for trees [14]). For a forest G with n vertices and no
isolated vertices,

γg(T ) ≤
⌈

3n

5

⌉
While conjecture 2.11 is still undecided it has been shown for certain types of trees.

A caterpillar graph is a tree in which all the vertices lie on a path or have distance at most
one from a central path. Figure 2.5 provides some examples. Kinnersley, West, and Zamani

Figure 2.5: Some caterpillar graphs

2013 [14] showed conjecture 2.11 holds for n-vertex forests with no isolated vertices where
each component is a caterpillar.

Theorem 2.12 (Kinnersley, West, and Zamani 2013 [14]). For F a forest of caterpillars with
no isolated vertices γg(F ) ≤ 3n/5

Rather than provide a full proof we give the main ideas; namely we describe Alice’s strategy
for F , a forest of caterpillars with no isolated vertices.

Let D be the current partial dominating set on Alice’s turn. A vertex is totally dominated if
all it’s neighbours are in the dominating set. The residual graph F ′ of F is F less any vertices
that are totally dominated. That is F ′ = F\{v ∈ V (F ) : N(v) ⊆ N [D]}. The residual graph,
F ′, is the subgraph of F that contains precisely the legal moves. Alice only considers the
graph F ′ when deciding on her next play. Alice considers three cases, in order of preference.

1. F ′ has a vertex v incident to two leaves. Alice plays v.

2. F ′ has a component C isomorphic to one of the path graphs P2, P4, P5. Alice plays a
winning strategy on C.

3. F ′ has no vertices incident to 2 leaves and no component isomorphic to one of the path
graphs P2, P4, P5. If this is the case then no component of F ′ has less than 6 vertices.
Fix a component C of F and let u1, . . . , uk the longest path in C. If there is some i
such that d(ui) = 3 then Alice plays ui. If not, then Alice plays u6.

Alice keeps playing according to these rules until there are no more vertices to play. This
concludes the strategy.

Further work has been done to improve the class of trees that the conjecture 2.11 holds for.
Bujtás, Csilla 2015 [6] showed that conjecture 2.11 holds for forests that have no isolated
vertices and in which no two leaves have distance 4.
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Theorem 2.13 (Bujtás, Csilla 2015 [6]). For F a forest with no isolated vertices such that
no two leaves have distance 4, γg(F ) ≤ 3n/5.

Again, rather than provide a full proof we describe Alice’s strategy. As part of this strategy
Alice assigns a value to each vertex v ∈ V (F ) as follows,

� v has value 3 if it is not dominated.

� v has value 2 if it is dominated but has an undominated neighbour.

� v has value 0 if it is totally dominated.

The gain of a play is the difference between the sum of all the values in the tree before and
after each play. In Alice’s strategy for theorem 2.13 there are 4 stages. At each stage Alice’s
strategy changes. The game starts in stage 1. If on Alice’s turn there is no suitable vertex
at that stage then she moves to the next stage.

Stage 1: There is a vertex v with gain at least 7 such that D ∪ {v} totally dominates two
new vertices. Alice plays v.

Stage 2: There is a vertex v with gain at least 7. Alice plays v.

Stage 3: There is a vertex v with gain at least 6. Subject to maximum gain, Alice plays a
vertex with value 3 that is incident to a leaf with value 3.

Stage 4: There is a vertex v with gain at least 3. Alice plays v.

This continues until there are no more vertices with gain at least 3. At which point every
vertex is dominated. This concludes the strategy.

2.3 The (a, b)-Dominating Game

In the dinner party problem, Alice and Bob each only place one platter in an alternating
sequence. But, suppose instead Alice and Bob are each allowed to place 2 platters on their
turn. The question here is, does this change the minimum number of platters Alice needs?
What about when Alice places more platters than Bob in each turn?

This extended dinner party problem is the natural extension of the dominating game where
we allow Alice and Bob to select more than one vertex per turn. We call this extension the
(a, b)-dominating game. The rules and win conditions for the (a, b)-dominating game are
the same as the dominating game. Except, Alice plays a vertices per turn and Bob plays b
vertices.

As far as we are aware, there has been no published work on the (a, b)-dominating game.

Definition 2.14 ((a, b)-Game Domination Number). Let G be a graph and a, b ≥ 1. The
(a, b)-game domination number γg(G; a, b) is the smallest target score such that Alice has a
winning strategy when playing the (a, b)-dominating game.

Theorem 2.15 (Askes). Let G be a graph with n vertices and a, b ≥ 1 . Then,

γg(G; a, b) ≤ a+ b

a
γ(G)− 1

The following proof is an extension of the proof of theorem 2.8 to the (a, b)-dominating game.
In fact, when a = b = 1 the proof is the same as the proof of theorem 2.8.

12



Proof. Let G be a graph and X ⊆ V (G) a dominating set of G such that |X| = γ(G). On
Alice’s first move she plays any a vertices in X. Now, suppose Bob has just played b vertices
and D is the current partial dominating set. Alice’s strategy is to play any a unchosen
vertices, v1, . . . , va ∈ X \D. After no more than γ(G)/a rounds the game must have ended
as X is a dominating set and at least a elements of X are chosen each round. In each round
Alice adds a vertices to D and Bob adds b vertices to D, hence the size of D is at most (a+b)
times the number of rounds.

If the number of rounds is exactly γ(G)/a then the game ends on Alice’s turn. This is because
Alice starts each round and the game is over on her (γ(G)/a)-th turn. In such a case Bob

has had one less turn than Alice. Hence |D| ≤ (a+ b)γ(G)
a − b.

If the number of rounds is strictly less than γ(G)/a then the size of D is strictly less than

(a+ b)γ(G)
a . In either case the game ends with |D| ≤ (a+ b)γ(G)

a − 1.

2.4 The Independent Dominating Game

To motivate the independent dominating game we introduce the cover band David and the
Derivatives. David and the Derivatives are the headline act at a large concert. On a normal
night there would be no problems filling the seats in the concert hall. However, they are under
COVID restrictions. This means that all the guests must be seated 2 meters apart. Alice
works for the Ministry of Health. Her job is to seat as few people as possible while still filling
the hall. Bob is David and the Derivatives’ manager. His job to maximise the number of
people seated in the hall. There are only door sales for this concert. So the more people Bob
can seat the more profit he and David and the Derivatives make. The guests arrive one by
one. Alternating, Alice and Bob direct people to seats. This continues until no more people
can be seated without breaking social distancing. Denoting the number of people seated as
n. How small can Alice guarantee n will be? And, how large can Bob guarantee n will be?
These questions have non-trivial solutions. And are a specific instance of the Independent
Dominating Game.

Definition 2.16 (Independent Set). For a graph G = (V,E), an independent Set is a subset
I ⊆ V such that no two vertices in I are adjacent. That is, for all u, v ∈ I there exists no
edge (u, v) ∈ E.

Definition 2.17 (Independent Dominating Set). For a graph G = (V,E), an independent
dominating set is a subset of V that is both an independent and a dominating set.

The independent domination game is played on a graph G = (V,E) as follows. Starting with
Alice, the players take turns playing a vertex v such that v is not incident with any vertex
that is already dominated. That is v ∈ V \N [D], where D is the current dominating set.
Alice and Bob continue playing vertices until D forms a dominating set. The score of the
game is the size of the dominating set. Alice’s goal is to minimise the score, and Bob’s goal
is to maximise it.

Since an independent dominating set is a maximal independent set and vice versa the inde-
pendent dominating game is equivalent to the Independent set game. This game is called
the competition-independence game. In this game Alice and Bob take turns constructing a
maximal independent set. As before Alice tries to minimise the size of the independent set.
Bob tries to maximise the independent set. The competition-independence number IA(G)
(respectively IB(G)) is the optimal size of a maximal independent set when Alice starts (or
Bob respectively).
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The competition-independence game was first introduced in Phillips and Slater 2001 [16]. In
[16] the authors demonstrate some bounds for path graphs. In particular, they prove theorem
2.18.

Theorem 2.18 (Phillips and Slater 2001 [16]). For Pn the path graph with n vertices

IA(Pn) = b(3n+ 4)/4c
IB(Pn) = b(3n+ 6)/4c

Further work on the bounds of competition-independence game was done by Goddard and
Henning 2008 [8]. In [8] the authors provide a winning strategy for Alice on trees of with
maximum degree less than 3.

Theorem 2.19 (Goddard and Henning 2008 [8]). For any tree T with greater than or equal
to 2 vertices and with maximum degree 3

IA(T ) ≤ 4n/7

We demonstrate the strategy for Alice introduced in [8]’s proof of theorem 2.19. Fix some
tree T . Suppose it is Alice’s turn. Let I be the current independent set. Define JI to be the
set of isolated vertices in T\N [I]. The energy of I is defined as

ϕ(I) = |I|+ |JI |+ 4/7|(V (T )−N [I]− JI)|

Alice’s strategy is to play the vertex that minimises the energy of I. That is, the v ∈ V (T )
that minimises ϕ(I ∪ {v})

Compared to the domination and total domination game there has been comparatively little
work on the competition-independence game. Recent work by Worawannotai, Ruksasakchai
2020 [19] compares the competition-independence game to the dominating game. Most of
the results in [19] are a variation of the type: For a positive integer n, there is some graph G
such that

γg(G)− IA(G) = n

There is an interesting fact about the domination game. If Bob has the first move the
domination number is less than or equal to γg(G) + 1. To see this consider a graph G. Bob
plays v as his first move. Alice pretends she has the first move in the subgraph H = G\N [v].
Alice will then win on G with score γg(H) + 1 ≤ γg(G) + 1. This fact is not true for the
competition-independence game. As an example, consider the star graph S7 in figure 2.6.

If Alice starts she will play v and the game ends with |I| = 1. If Bob starts then he will play
a vertex ui. In which case Alice cannot play v, so she must play a vertex uj such that i 6= j.
The game will end with |I| = 7. Thus IA(S7) = 1 and IB(S7) = 7.

Definition 2.20 (Independence number). The independence number of a graph G, denoted
α(G), is the size of a maximum independent set in G.

A graph has no independent sets larger than its independence number. Consequently, when
playing the competition-independence game the size of the independent set formed is no
larger than the independence number. This means the competition-independence number is
bounded above by the independence number. Hence, we get theorem 2.21.

Theorem 2.21. For a graph G,
IA(G) ≤ α(G)

.
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Figure 2.6: The star graph S7
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Chapter 3

Colouring

3.1 Introduction

Long ago all world maps were hand drawn. Alice has a business that specializes in drawing
world maps. Each map is beautifully hand coloured. Each country getting its own colour.
To ensure the maps are visually appealing and to help distinguish countries no two bordering
countries can be the same colour. In those days ink was expensive. So Alice wishes to use
the least number of colours possible. What is the smallest number of colours Alice needs to
colour a map in such a fashion?

B

G

G

R
Y

B

Figure 3.1: A coloured map

(Image courtesy of Dillion Mayhew)

We can translate the problem of map colouring to a problem about graphs. We do this by
placing a vertex in each country and join two vertices with an edge if the corresponding
countries share a border.

Figure 3.2: Translating maps to graphs

(Image courtesy of Dillion Mayhew)

By constructing a graph in this way we have a one to one correspondence between colourings
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of the graph and the corresponding map. So, if Alice assigns colours to the vertices such
that no two neighbouring vertices have the same colour, she has a way to colour the map.
Any graph that can be drawn on the plane (called a planar graph) can be coloured in this
manner using only four colours. This is known as the four colour theorem [18]. The four
colour theorem states that any planar graph can be coloured using only four colours. Thus,
Alice only needs 4 colours to colour her maps.

We formally define a colouring as follows.

Definition 3.1 (Proper k-Vertex Colouring). Let C = {1, . . . , k} be a set of colours, a k-
vertex colouring of a graph G = (V,E) is a mapping c : V → C. A proper k-vertex colouring
of G = (V,E) is a mapping c : V → C such that for two vertices u, v ∈ V if (u, v) ∈ E then
c(u) 6= c(v).

When referring to graph colourings we will henceforth be referring to proper k-vertex colour-
ings for some k.

Definition 3.2 (Chromatic Number). The chromatic number, χ(G), of a graph G is the
smallest k such that G has a proper k-vertex colouring.

3.2 The Colouring Game

Alice’s map colouring business is a huge success. To help colour her maps Alice decides to
hire Bob. Unbeknownst to Alice, Bob is part of a secret ink cabal. The cabal’s sole goal is
to drive up ink sales. Bob will try to use as many colours as possible when colouring maps.
To colour a map Alice and Bob take turns assigning each country a colour. They continue
until all the countries are coloured. A problem arises almost immediately. By strategically
choosing colours Bob can make it so that some maps cannot be coloured with four colours.
In fact for some maps Bob can force 8 colours [12]. So, what is the total number of colours
Alice needs to ensure that any map can always be coloured? This is an open question. The
current best bound is 17 [23]. In section 3.3.5, we will show how this bound was found. We
can also ask the same question about classes of graphs that are not planar.

But first, we define the colouring game. Let G be a graph, and C a set of colours. Beginning
with Alice, Alice and Bob take alternating turns. On their turn they choose an uncoloured
vertex, v, and assign v a colour from C such that no two adjacent vertices in G have the
same colour. This continues until one of two win conditions are met. First, Alice wins if all
the vertices are coloured. Second, Bob wins if there is a vertex that cannot be coloured with
the available colours.

Definition 3.3 (Game Chromatic Number). For a graph G the game chromatic number,
χg(G), is the smallest number of colours such that Alice has a winning strategy for the
colouring game on G.

Consider a graph G. If there is a winning strategy for Bob with n colours then n + 1 is a
lower bound for the game chromatic number of G. That is n + 1 ≤ χg(G). Conversely, if
there is a strategy for Alice that guarantees a colouring with m colours then m is an upper
bound for the game chromatic number. That is χg(G) ≤ m.

3.2.1 Lower Bounds for the (a, b)-Colouring Game

We consider an extension of the colouring game, the (a, b)-colouring game. In the (a, b)-
colouring game the win conditions and rules are the same as the standard game. But, on
each turn Alice colours a vertices and Bob colours b vertices.
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Definition 3.4 ((a, b)-Game Chromatic Number). Let G be a graph, and a, b ≥ 1. Then,
χg(G; a, b) is the smallest number of colours such that Alice has a winning strategy for the
(a, b)-colouring game on G.

Note that χg(G) = χg(G; 1, 1).

The first results we will look at are some lower bounds for the game chromatic number.

Bodlaender 1990 [3] showed that for T , the class of trees, 4 ≤ χg(T ). He did this by defining
a tree and an associated strategy for which Bob will always win with 4 colours. We take the
proof from [3] and extend it to a new proof of theorem 3.5.

Theorem 3.5. Let T be the class of trees. If we have b ≥ 1 then,

b+ 3 ≤ χg(T ; 1, b)

Proof (Askes). It suffices to show that there exists a tree in which Bob has a winning strategy
with b+ 2 colours.

Consider the tree T as defined in figure 3.3.

. . .. . . . . . . . . . . .

b+ 1 vertices

Figure 3.3: A tree, T

Let {c1, c2, . . . , cb+1, cb+2} be the set of available colours. On Alice’s first move she plays any
vertex, v, and colours it. Let the colour of v be c1. Bobs first move is to colour any vertex
with distance 3 to v. We now have a subgraph in T of the type shown in figure 3.4. Bob
then colours y1, . . . , yb−1 with c2, . . . , cb respectively.

u4

c1

u3u2u1

c1

x1 x2 xb+1
y1

c2

y2

c3

yb−1

cb

yb yb+1

. . . . . .

Figure 3.4: A subgraph of the tree T in figure 3.3

We consider three cases.

1. Alice colours u2, x1, x2, . . . , or xb+1.

Bob colours yb with cb+1 and yb+1 with cb+2. u3 now has b + 2 different coloured
neighbours and thus Bob wins.
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2. Alice colours u3.

The colour of u3 cannot be one of c1 . . . cb. Therefore u3 is either coloured cb+1 or cb+2.
Without loss of generality assume the colour of u3 is cb+2. Bob colours x1, . . . , xb with
c2, . . . , cb+1 respectively. Vertex u2 now has b + 2 uniquely coloured neighbours and
thus Bob wins.

3. Alice colours yb or yb+1

Bob colours u2 with cb+1 and yb+1 (or yb if Alice coloured yb+1) with cb+2. u2 now has
b+ 2 uniquely coloured neighbours and thus Bob wins.

Therefore we have a winning strategy on G ∈ T for Bob with b+ 2 colours.

Graphs of Bounded Pathwidth

The class of all trees is a comparatively restricted class of graph. To find a lower bound for a
more general class of graphs we temporarily set aside trees and consider graphs of bounded
pathwidth. The pathwidth of a graph can be considered a measure of how “path like” it
is. For example, the graphs of path width 1 are caterpillars and unions of caterpillars, such
graphs are almost paths (see figure 3.5). Figure 3.6 is a graph of pathwidth 3 and is noticeably
less path like.

a

b

c

d

e

f

g

h

i j

Figure 3.5: A graph of pathwidth 1

a

b
c

d

e

f

g

h

i

Figure 3.6: A graph of pathwidth 3

Definition 3.6 (Path Decomposition). Let G = (V,E) be a graph. A path decomposition
is set of subsets of V , P = (P1, P2, . . . , Pn) such that

⋃
i Pi = V and P has the following

properties.

(i) For all edges (u, v) ∈ E there exists an i such that such u, v ∈ Pi

(ii) If there exists an i ≤ j and vertices u, v such that v ∈ Pi and, v ∈ Pj then for all
i < k < j, v ∈ Pk

The width of a path decomposition is one less the size if the largest set in P .

Definition 3.7 (Pathwidth). The pathwidth of a graph G is the minimum width of a path
decomposition of G. A graph of bounded pathwidth k is a graph with a pathwidth less than
or equal to k.

As an example consider the graphs in figures 3.5 and 3.6. The graph in figure 3.5 has
pathwidth 1 and the path decomposition

({a, b}, {b, d}, {b, e}, {b, f}, {b, g}, {b, c}, {c, h}, {h, i}, {h, j})

And the graph in figure 3.6 has pathwidth 3 and the path decomposition

({a, b, c, d}, {c, d, e, f}, {d, e, f, h}, {e, d, f, g}, {d, f, g, h}, {d, g, h, i})
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A maximal graph, G, of pathwidth k is a graph in which we cannot add any more edges to
without increasing its pathwidth. In such a graph every element in its path decomposition is
a (k + 1)-clique. These graphs are known as k-paths.

Definition 3.8 (k-path). A k-path is a maximal graph of pathwidth k.

Figure 3.7: A k-path with width 3

A k-path G contains a k + 1 clique and so there is no proper colouring with less than k + 1
colours. Hence, when playing the colouring game on a k-path Bob will always win if there
are k or less colours.

Theorem 3.9. For G a k-path,

k + 1 ≤ χg(G)

Theorem 3.10. Let Pk be the class of graphs with bounded pathwidth k. If we have b ≥ 1
then

(b+ 1)k +

⌈
b

2

⌉
≤ χg(Pk; 1, b)

Theorem 3.10 first appeared in Fragile, Kern, Kierstead, Trotter 1993 [7] as a lower bound
for the (1, 1)-colouring game. In [7] the authors do not give a formal proof, rather they sketch
a proof by providing the graph on which the game is played. Here we fill in the details by
proving a new proof. At the same time we extend the ideas to the (1, b)-colouring game.

Proof. It suffices to show that there exists a graph in Pk for which Bob has a winning strategy
with m = (b+ 1)k+

⌈
b
2

⌉
− 1 colours. Let the set of available colours be C = {c1, c2, . . . , cm}.

We define the graph G as follows. Start with a k-clique, Kk, then take n = 2|C|+ 1 vertices,
v1, . . . , vn and connect each vi to each vertex in Kk. Note that for each vi, Kk ∪ {vi} forms
a (k + 1)-clique. Now copy this graph, and connect the copies at any vertex not in Kk. We
now have the graph, G, as in figure 3.8. Note that v1 = t1.

Note that G has the path decomposition

{
Kk ∪ {vn},Kk ∪ {vn−1}, . . . ,Kk ∪ {v1},K ′k ∪ {v1},K ′k ∪ {t2}, . . . ,K ′k ∪ {tn}

}
and therefore has pathwidth k.
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v1(t1)
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K ′k

u1
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uk−1

uk

. . .

..
.

Figure 3.8: Graph G

Consider two disjoint copies of G, G1 and G2. On Alices first turn she will colour a vertex in
exactly one of G1 and G2. On Bob’s first turn he can colour a vertex in whichever copy Alice
didn’t, say G1, an only play in G1. Then, without loss of generality we can assume that Bob
has the first move in G.

On Bobs first turn he colours v1 with c1 and v2, t2, v3, t3, . . . , vb/2, tb/2 with unique colours.
By the symmetry of G we can assume Alice colours one of t2, . . . , tn, s1, . . . , sk.

We consider the subgraph, H, in figure 3.9, in which Alice has not yet coloured a vertex.

vn

v1

Kk

u1 u2 uk−1 uk

..
.

. . .

Figure 3.9: Subgraph H of G in figure 3.8

Bob’s strategy is to always colour b uncoloured vertices not in Kk with colours not used in
H. We keep playing until either Kk is fully coloured bar one, or Bob runs out of new colours.
Note that as n > m Bob cannot run out of vertices to colour before he runs out of colours.
We consider each case separately.
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First, suppose Kk is fully coloured bar one. Let the uncoloured vertex be x. On Bob’s first
turn he coloured b vertices, but only

⌈
b
2

⌉
of these vertices are in H. In the second round

Alice coloured no vertex in H and bob colured b vertices. Adding b many colours. As each
coloured vertex in Kk must have been coloured by Alice there have been at least k−1 rounds
after the first, and in each round Bob coloured b vertices. Thus b(k − 1) many colours have
been used in H. Finally, when each vertex in Kk was coloured it must have been coloured
differently than the ones before it. This adds (k − 1) many colours. Therefore the total
number of unique coloured neighbours of x is⌈

b

2

⌉
+ b+ b(k − 1) + (k − 1) = (b+ 1)k +

⌈
b

2

⌉
− 1 = |C|

Therefore x cannot be coloured, and Bob wins.

Next, suppose Bob has run out of colours. Let y be an uncoloured vertex in Kk. As y
is connected to every vertex in V (H), y has (b + 1)k +

⌈
b
2

⌉
− 1 many uniquely coloured

neighbours. Hence y cannot be coloured. Thus Bob has won.

3.3 Marking Game

Think back to the Dinner Party Problem. Originally, Alice fed everyone buffet style. But, she
finally caught on to Bob’s strategy and fired him. To cut down on costs she decides everyone
gets a set plate. Now everyone will get a plate, and will always be fed. However, there is a
new problem. The guests get upset if too many of their immediate neighbours are fed before
them. Consider a graph G with guests as vertices and an edge between a pair of guests if
they care about each other being fed. Note that the graph here is different to the one used
in the Dinner Party Problem. For each guest v let d+(v) denote the number of immediate
neighbours that are fed before v. Alice wants to make the party go as smoothly as possible.
So, she wants a strategy that minimises the value ∆+ = maxv∈V (G) d

+(v).

To help hand out the plates, Alice enlists the help of her friend Kate. Kate is known as Bob
to her friends. So, to unify this problem with the others we will henceforth refer of Kate as
Bob. Alice and Bob will take turns passing out plates. There is a snag. Alice’s guest list
includes some high ranking government ministers and Bob is a foreign spy. Bob’s mission is
to ruin Alice’s party. In doing so Bob will instil distrust between the ministers. To do this
he will attempt to pass out plates that maximises ∆+. What is the highest value of ∆+ that
Bob can force? This is a specific instance of the marking game.

Introduced by Zhu 1999 [22], the marking game is a simplified version of the colouring game.
In the marking game the players simply pick vertices. They don’t colour the vertices.

The marking game is played as follows. Let G = (V,E) be a graph, and t ≥ 1 a target score.
Starting with Alice, Alice and Bob take turns choosing unchosen vertices in V . The order in
which the vertices were chosen forms a linear order, L. For a vertex v, let d+(v) denote the
number of neighbours of v that are L-less than v. The score of the game is maxv∈V (G) d

+(v).
Alice wins if the score is strictly less than t and Bob wins otherwise.

Definition 3.11 (Game Colouring Number). Let G be a graph. The game colouring number
colg(G) is the minimum target score in the marking game such that Alice has a winning
strategy.

The marking game is interesting in its own right. But, it has another property that is
advantageous. If Alice has a winning strategy in the marking game with target score t
then she has a winning strategy in the colouring game with t colours. The marking game
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is commonly used to find upper bounds for the game chromatic number. For example, the
current upper bound for the class of planar graphs was found using a strategy for the marking
game [23].

There is simple strategy for Alice that takes a strategy for the marking game and converts it
to a strategy for the colouring game. This strategy is called first fit. Fix C = {c1, c2, . . . , ck}
a set of colours. Suppose Alice has chosen a vertex v in the marking game. In the colouring
game she colours v with the least i such that ci is a valid colour in the colouring game. Let
the score of marking game be s. At no point will Alice try to colour a vertex with more than
s coloured neighbours. Hence by using first fit Alice has a winning strategy for the colouring
game if |C| ≤ s+1. Note that Alice wins if the target score is equal to the number of colours.
Hence the game colouring number bounds the game chromatic number. That is

χg(G) ≤ colg(G)

3.3.1 Activation Strategy

Faigle, Kern, Kierstead, and Trotter 1993 [7] introduced a winning strategy for Alice on the
class of trees with four colours.

Theorem 3.12 (Faigle, Kern, Kierstead, and Trotter 1993 [7]). For T a tree χg(T ) ≤ 4

We present the strategy here, modified for the marking game. This strategy is the Activation
Strategy for trees. This example misses some nuance of the full Activation Strategy. However,
it provides good motivation for the full strategy.

a

b c

d e

f g h i

j k l m n

o p q r

s t u

Figure 3.10: A tree, T

Consider the tree T in figure 3.10. T has the vertex set {a, b, c, . . . , t, u}. Fix a target score
t = 4. We consider T to have the root a. Part of Alice’s strategy is to keep track of a set
of activated vertices, A. Alice starts by marking a and adding a to A. Suppose Bob marks
the vertex j. Let P be the path starting with j and traversing up the tree until it reaches
a vertex in A. In this case P = j, f, d, c, a. Alice adds all the vertices in P to A. Alice’s
strategy is as follows:

1. If the end of the path P is not marked she marks it.

2. If the last vertex in P is coloured then she colours the second to last vertex.
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3. If both the last and second to last vertices are coloured she colours any vertex whose
parent is coloured.

The last vertex in P is marked, so by the second rule she marks c. At this stage A =
{a, c, d, f, g}. Bobs next move is to mark k. As before Alice traverses upwards forming a
path P2 = k, f . The last vertex in P2 is f and f is not marked. So by the first rule she marks
f . Bob marks g. Alice adds g to A and marks d for the same reason as her last turn. The
current game state is represented in figure 3.11, with superscripts representing the order the
vertices were chosen.

a

1

b c

3

d

7
e

f

5
g

6

h i

j

2

k

4

l m n

o p q r

s t u

Figure 3.11: The tree T after 6 turns

Some final example plays are as follows. Bob marks q. Alice adds q, l, h, e to A and marks e.
Bob marks r. Alice adds r to A and marks l. Bob marks h. By the third rule Alice marks b.
The game proceeds in this manner until all the vertices are marked.

When using this strategy Alice will win if the target score is at least 4 (for a proof see section
3.3.3). The full Activation Strategy was introduced by Kirstead 2000 [10]. The Activation
Strategy is an extension of the strategy just described to the marking game for arbitrary
graphs.

3.3.2 Summary of the Activation Strategy

Before we formally define the Activation Strategy, we need the concept of an induced direction
in a graph. Let G = (V,E) be a graph and fix a linear order L on V . GL is the directed graph
induced by L on the graph G as follows. We have the directed edge (u, v) ∈ GL if and only
if u >L v and (u, v) ∈ E. We call GL the direction induced by L on G. This ordering may
be the reverse of what you might expect. The reason for this is when using the Activation
Strategy Alice wants to traverse the vertices from biggest to smallest in L. Hence, we want
the edges directed from biggest to smallest. The less than symbol, >L, can be thought of as
an arrow pointing to the next element in the directed graph.

We need a little more notation. Let v be a vertex in V (G) and N(v) be the set of neighbours
of v. Then with respect to v we have the following

� The out-neighbours are N+
GL

(v) = {u ∈ N(v) : v >L u}
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� The in-neighbours are N−GL
(v) = {u ∈ N(v) : v <L u}

� The out-degree is d+
GL

(v) = |N+
GL

(v)|

� The in-degree is d−GL
(v) = |N−GL

(v)|

� V +
GL

(v) = {u ∈ V (g) : v >L u}

� V −GL
(v) = {u ∈ V (g) : v <L u}

In GL the maximum out-degree is ∆+
GL

(G) = maxv∈V (G)N
+
GL

(v), and the maximum in-degree

is ∆−GL
(G) = maxv∈V (G)N

−
GL

(v).

Finally,

� N+
GL

[v] = N+
GL

(v) ∪ {v}

� N−GL
[v] = N−GL

(v) ∪ {v}

� V +
GL

[v] = V +
GL

(v) ∪ {v}

� V −GL
[v] = V −GL

(v) ∪ {v}

When it is clear from context which directed graph we are referring to, we will drop the GL
subscript. A simple way to think about this notation is to consider + as before in the linear
order and − as after. For example N+(v) is the set of neighbours before v.

We can now give a formal description of the Activation Strategy. The Activation Strategy
can be summarised as follows.

1. Alice starts by marking the least v in L.

2. On her next turn let u be the last vertex marked by Bob. Alice starts at u activates it
and moves to w the least unmarked neighbour of u in L.

3. If w is activated or has no unmarked neighbours then Alice marks w. If not Alice
repeats step (2) on w until she either finds an active vertex that is activated or has no
unmarked neighbours.

Algorithm 3.1 Activation strategy

1: x← b
2: while x /∈ A do
3: A := A ∪ {x}
4: s(x) = minL(N+[x] ∩ (U ∪ {b}))
5: x← s(x)

6: if x 6= b then
7: play x
8: else
9: y ← minL U

10: if y 6= A then
11: A← A ∪ {y}
12: play y

Definition 3.13 (Activation strategy [10]). Let G be a graph and L a linear ordering on
V (G). We define the Activation Strategy S(L,G) as follows:
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Let U denote the set of unmarked vertices. Alice maintains a subset A ⊂ V (G) of active
vertices. Initially A = ∅. We activate a vertex x by adding it to A. On her first turn Alice
activates and marks the least vertex in the ordering L. Now suppose that Bob has just
marked the vertex b. Alice uses algorithm 3.1 to update A and choose the next vertex to
play.

There are multiple ways of finding bounds for the game colouring number using the Activation
Strategy. One such method is to use the concept of matchings. This is the original method
undertaken by Kierstead 2000 [10].

Definition 3.14 (Matching). Let G = (V,E) be a graph. A matching M ⊂ E is a set of
independent edges, that is a set of edges that share no common vertices. We say M is a
matching from X to Y (and is denoted M : X → Y ) if X,Y ⊆ V and every vertex in X is
joined by an edge in M to some vertex in Y . That is for all u ∈ X there is (u, v) ∈ M such
that v ∈ Y . And, we write .

Definition 3.15 (Matching Number). Let G = (V,E) be a graph and L a linear order on
V . For u ∈ V the matching number, m(u, L,G), of u with respect to L in G is the size of
the largest set Z ⊆ N−[u] such that there exists a partition {X,Y } of Z and there exist
matchings M from X ⊂ N−[u] to V +(u) and N from Y ⊆ N−(u) to V +[u].

Consider figure 3.12. In this figure, all the in-neighours of u (N−(u)) are on the left and the
vertices before u (V +(u)) are on the right. The matching M from X ⊂ N−[u] to V +(u) joins
the red regions. The matching N from Y ⊂ N−(u) to V +[u] joins the blue regions. Note
that there may be edges joining the in-neighbours to the set V +(u).

u

N−(u) V +(u)

M

N

Figure 3.12: The matchings that form the matching number

Definition 3.16 (Graph Rank [10]). Let G = (V,E) be a graph, L a linear order on V , and
Π(G) the set of all linear orders on V . The ranks r(L,G), r(L,G) and r(G) are defined as:

r(u, L,G) = d+
GL

(u) +m(u, L,G)

r(L,G) = max
u∈V

r(u, L,G)

r(G) = min
L∈Π(G)

r(L,G)
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Fix some graph G = (V,E), and a linear order L on V . Denote the set of activated vertices
A. Every vertex that is marked is immediately activated by Alice. So at the end of her turn
any unmarked vertex, u, has at most |A ∩ N(u)| many marked neighbours. So the score of
the game is at most |A ∩ N(u)| for any unmarked vertex u at the end of all Alice’s turns.
We can partition |A∩N(u)| into two pieces, the out-neighbours and in-neighbours of u. Let
X = A∩N+(u) and Y = A∩N−(u). |A∩N+(u)| ≤ d+(u), this is where the d+ term comes
from in the rank. For any vertex x, let s(x) denote such the least unmarked out-neighbour of
x. s(x) is either activated before or after x. So we can partition A ∩N−(u) into two pieces,

{x ∈ N−(u) ∩A : x is activated before s(x)}
{x ∈ N−(u) ∩A : x is activated after s(x)}

The matching number is the largest possible size of these sets. And so, the matching number
bounds the size of A ∩N−(u).

Most bounds found when using the Activation Strategy involve finding the rank of a graph.
Once the rank is known we have a linear order L on which to play the Activation Strategy.
When using the activating strategy on such a L we get the following upper bound for the
game colouring number.

Theorem 3.17 (Kierstead 2000 [10]). For any graph G = (V,E) and linear order L on V ,
if Alice uses the Activation Strategy S(L,G) to play the marking game on G, then the score
will be at most 1 + r(L,G). In particular,

colg(G) ≤ 1 + r(G)

The following is the original proof from [10] modified to unify it with the definitions in this
report. We have also made some minor changes to make it easier to follow.

Proof. Fix G = (V,E) a graph and L a linear order on V . We need to show that on any
turn any unchosen vertex u has at most r(u, L,G) many active neighbours. Denote the set
of active vertices A and the set of unmarked vertices U . The main task is to show that
|N−(u) ∩A| ≤ m(u, L,G). Once this is done we have

|N(u) ∩A| ≤ d+(u) + |N−(u) ∩A|
≤ d+(u) +m(u, L,G)

= r(u, L,G)

and the result follows.

Let s(x) be the L-least unmarked vertex in N+[x]. Note that s(x) is the same as defined in
algorithm 3.1. This means that if x has just been activated s(x) will be activated immediately
after x. Define the sets P and Q as follows,

P = {x ∈ N−(u) ∩A : x is activated before s(x)}
Q = {x ∈ N−(u) ∩A : x is activated after s(x)}

We need to show that s is injective when its domain is restricted to either P or Q. Doing
this will allow us to form matchings of the form (x, s(x)). First, let x, y ∈ P such that x 6= y
and x was activated before y. s(x) is the next vertex activated after x. So either y = s(x) or
s(x) was activated before y. In either case s(y) must have been activated after s(x). Thus
s(x) 6= s(y).

28



Next, let x, y ∈ Q such that x 6= y and x was activated before y. s(x) was activated before x.
So s(x) was marked immediately after x. Thus x was marked before y was activated. Hence
when y is activated s(x) is not a valid choice for s(y). Thus s(x) 6= s(y).

{P,Q} is a partition of N−(u)∩A. Note that for any vertex x ∈ N−(u)∩A, u ∈ N+(x)∪U .
This means that s(x) ≤ u and so s(x) ∈ V +[u]. Thus SP = {(x, s(x)) : x ∈ P )} and
SQ = {(x, s(x)) : x ∈ Q)} are matchings from N−(u) to V +[u].

There is a problem with these matchings. They both go from N−(u) to V +[u]. To match
the definition of m(r, L,G) we need one of SP and SQ to go from N−[u] to V +(u). If there
are no vertices x ∈ P, y ∈ Q such that s(x) = u = s(y) then both matchings are from N−(u)
to V +(u) and we are done.

If there are vertices x ∈ P, y ∈ Q such that s(x) = u = s(y) then fix some such x and y.
Since u is unchosen it must be the case that u ∈ N−(s(u)).

If u ∈ P then set X = (P ′ \ x) ∪ {u} and Y = Q.

If u /∈ P then set X = (Q′ \ y) ∪ {u} and Y = P .

In either case SX = {(x, s(x)) : x ∈ X)} is a matching from N−[u] to V +(u) and SY =
{(x, s(x)) : x ∈ Y )} is a matching from N−(u) to V +[u]. So we have our matchings as
desired.

3.3.3 Upper Bounds Using the Activation Strategy

The proofs in this section follow a pattern. First, we give a linear order for all the graphs in
the class. Then we find the maximum possible in-degree. Finally, we bound the maximum
size of the two matchings the form the matching number.

Recall that theorem 3.12 states that for any tree T

χg(T ) ≤ 4

To demonstrate the basic pattern and idea behind the proofs in this section we prove theorem
3.12 using the Activation Strategy. This proof appears in [10], but few details are given. Here
we give a full proof.

Proof of Theorem 3.12. Fix a tree T = (V,E). By theorem 3.17 colg(T ) ≤ 1 + r(T ). So it
suffices to show that the rank of T is less than or equal to 3. We define a linear order L on
V by using breath first traversal. First we pick some vertex r to be the root of our tree. r
becomes the least element in L. We then add all the children of r then all of their children
and so on. For an example see figure 3.14.

1r

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 3.13: Breath first traversal

Figure 3.14: Directed graph induced by
breadth first traversal
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Fix some v ∈ V . We show r(v, L, T ) ≤ 3. Every vertex u ∈ V apart from r has d+(u) = 1.
For r, d+(r) = 0. In other words every vertex has most a single parent. Hence d+(v) ≤ 1.

Let Z ⊆ N−[v] and {X,Y } a partition of Z such that X ⊆ N−[v] and Y ⊆ N−(v).

It remains to show that if there exist matchings M : X → V +(v) and N : Y → V +[v] then
|Z| = |X| + |Y | ≤ 2. This is the crux of the entire proof. In short, we bound X and Y by
assuming they are a part of the matchings M and N .

Assume there exist such matchings M and N .

Assume for a contradiction that there is an edge (x, y) between N−(v) and V +(v). Thus,
x ∈ N−(v) and y ∈ V +(v). As x >L v >L y, x ∈ N−(y). Thus y ∈ N+(x). We also know
that v ∈ N+(x). And thus as d+(x) = |N+(x)| = 1, y = v. This contradicts the fact that
v /∈ V +(v). Therefore there are no edges between N−(v) and V +(v)

Therefore M can contain at most the single edge (v, u) for some u ∈ N+(v). Thus the only
vertex X can contain is v. The same is true for N . N can contain at most the single edge (u, v)
for some u ∈ N+(v). Thus the only vertex Y can contain is u. Therefore |Z| = |X|+ |Y | ≤ 2.
Then we have

r(v, L, T ) = d+(v) +m(v, L, T ) ≤ 1 + 2 = 3

as desired.

Recall that theorem 3.5 states that for the class of trees T , χg(T ; 1, b) ≥ b+ 3. When b = 1
we get the lower bound for the game domination number on the class of trees. Further, when
combined with theorem 3.12 we get that 4 ≤ χg(T ) ≤ 4. Hence we get corollary 3.18 as an
immediate consequence.

Corollary 3.18. For the class of trees T

χg(T ) = 4

Graphs of Bounded Pathwidth

Interval graphs are graphs defined from a series of closed intervals in the real numbers. The
vertices represent the intervals and two vertices are connected with an edge if the associated
intervals overlap. For an example see figure 3.15. The clique width of an interval graph is the

a
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d

e
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Figure 3.15: An interval graph with clique width 4

size of its maximum clique. The interval width of a graph G is the minimum clique width
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of all interval graphs that contain G as a subgraph. It is shown in Faigle, Kern, Kierstead,
and Trotter 1993 [7] that for any graph with interval width w, χg(G) ≤ 3w − 2. Building on
this result, Kierstead 2000 [10] uses the Activation Strategy to prove the same result. The
pathwidth of a graph is one less than its interval width [4]. This then gives us theorem 3.19.

Theorem 3.19. Let G be a graph of pathwidth k. Then,

χg(G) ≤ 3k + 1

The proof that we present here is new and based directly on our definition of pathwidth.
Rather than the previous results ([7, 10]) whose proofs are based on properties of interval
graphs.

Proof. Let G = (V,E) be a graph with pathwidth k, and P = {P1, . . . , Pn} a path decompo-
sition of width k.

Consider a linear order L on V such that for all i < j, all elements in Pi are less than all
elements in Pj \ Pi.

Without loss of generality assume G is maximal, that is all Pi are cliques.

Claim. For all v ∈ V , d+(v) ≤ k.

Proof of Claim. Fix some v ∈ V . Let i be the least such that v ∈ Pi. Note that |Pi \ v| ≤ k.

Let x ∈ N+(v). As there is an edge (x, v) ∈ E there must be some j such that x, v ∈ Pj .

If j > i then by construction of L, v <L x. But this contradicts the fact that x ∈ N+(v).
Therefore j ≤ i. Then by the minimality of i, i = j. Therefore x ∈ Pi.

Thus N+(v) ⊆ Pi \ v. Hence d+(v) = |N+(v)| ≤ |Pi \ v| ≤ k. �

χg(P ) ≤ colg(P ) and colg(G) ≤ 1 + r(G). So, by theorem 3.17 it suffices to show that for
any vertex v ∈ V , r(v, L,G) ≤ 3k.

Let v be any vertex in V . Let Z ⊂ N−[v] and {X,Y } a partition of Z such that X ⊂ N−[v]
and Y ⊂ N−(v).

Consider a matching M : X → V +(v). Let (a, b) be an edge in M . v ∈ N+(a) and N+(a)
is a clique as N+(a) ⊆ Pi for some i. Therefore b is adjacent to v that is b ∈ N+(v). Hence
every edge in M goes from X to N+(v). Thus |X| ≤ |N+(v)| ≤ k.

Consider a matching N : Y → V +[v]. Let (a, b) be an edge in N . Let i, j be the least such
that a ∈ Pi and b ∈ Pj . As (a, b) is an edge, by the definition of path decomposition, b ∈ Pi
or a ∈ Pj . If a ∈ Pj then a ∈ V +[v], this contradicts the fact that a ∈ N−(v). Therefore
b ∈ Pi. As v ∈ Pi and Pi is a clique b is adjacent to v, that is b ∈ N+(v). Hence every edge
in N goes from N to N+(v). Thus |Y | ≤ |N+(v)| ≤ k.

m(v, L,G) ≤ |Z| = |X|+ |Y |. Therefore by the definition of rank,

r(v, L,G) = d+
GL

(v) +m(v, L,G) ≤ k + |X|+ |Y | ≤ 3k
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Graphs of Bounded Treewidth

Definition 3.20 (Tree decomposition). A tree decomposition (X,T ) of a graph G = (V,E)
is a tree, T , along a collection of subsets of V , X = {X1, . . . , Xn}, indexed by vertices in T ,
such that =

⋃
iXi = V and X obeys the following properties.

(i) For all edges (u, v) ∈ E there exists an i such that u, v ∈ Xi

(ii) If there exists an x, y ∈ V (T ) and vertices u, v such that v ∈ Xx and v ∈ Xy then for
all l on the path from x to y, v ∈ Pl.

The width of a tree decomposition is the maximum value of |Xi| − 1 for all i ∈ V (T ).

Definition 3.21 (Treewidth). The treewidth of a graph G is the minimum width of a tree
decomposition of G. A graph of bounded treewidth k is a graph with treewidth less than or
equal to k.

Just as pathwidth is a measure of a graphs “path-ness”, treewidth is a measure of how
“tree like” a graph is. Though treewidth had been treated informally before, the concept of
treewidth was formally introduced by Robertson and Seymour during their seminal work on
graph minors [17]. The initial use was to show that if G is a planar graph then there is a
k, depending solely on G, such that any graph H with no minor isomorphic to G has tree
width at most k. Since then, extensive work as been done using the concept of treewidth.
For example, treewidth can be used to solve hard decision problems on graphs restricted to
bounded tree width in polynomial time [2].

There is a relationship between our definitions of treewidth and pathwidth. The graphs
of bounded pathwidth are exactly the graphs of bounded treewidth whose underlying tree
structure forms a path. Thus, every graph of bounded pathwidth k is a graph of bounded
treewidth k.

To find an upper bound for graphs of bounded treewidth we use algorithm 3.2 to generate
a linear order on the vertices of a graph, G. Such an ordering is based on a minimal tree
decomposition, (X,T ). Algorithm 3.2 traverses T using breadth first traversal and adds any
vertex from Xi to the linear order if it is the first time we had encountered the vertex. In a
graph of treewidth 2 (i.e. a tree) algorithm 3.2 is just breath first traversal.

Algorithm 3.2 Linear order in tree decomposition

Require: (X = {Xi : i ∈ V (T )}, T ) is the tree decomposition of a graph G = (V,E). r is
the root of T

Ensure: L is a linear order on V
1: function LOinTree((X,T ), r)
2: L← ∅ . our linear order for V
3: let Q be a FIFO queue
4: Q.enqueue(r)
5: mark r as visited
6: while Q is not empty do
7: v ← Q.dequeue()
8: L← L ∪ {v \ L} . add all elements in V (G) not already in L
9: for all U ∈ N(v) s.t. U is unvisited do

10: Q.enqueue(U)
11: mark U as visited
12: return L
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Lemma 3.22 (Askes). Let G = (V,E) be a graph of treewidth k and ({X1, X2, . . . , Xn}, T )
a tree decomposition of G with width k. If L is a linear order on V generated by algorithm
3.2, then for any vertex v in V

d+(v) ≤ k

Proof. Fix a graph G = (V,E). Let L be the linear ordering on V generated by algorithm
3.2. Let v be any vertex in V .

Suppose that algorithm 3.2 has just traversed Xi ∈ X and added v to L. All the neighbours
of v that are L-less than v must have already been traversed. By the definition of tree
decomposition all the neighbours of v that have been traversed are in Xi. Thus N+(v) ⊆ Xi.
Note that |Xi \ v| ≤ k. Thus there are at most k neighbours of v in L.

A k-tree is a maximal graph with treewidth k. This characterization of k-trees means that
a graph with treewidth k is a subgraph of some k-tree. Therefore, to find a bound for the
class of trees with bounded treewidth we only need to find a bound for the class of k-trees.
Theorem 3.23 was first introduced in Wu, Zhu 2008 [20]. In [20] the authors found a bound
for k-trees using a concept they call pseudo-partial k-trees. We give a new proof based on
the Activation Strategy rather than pseudo-partial k-trees.

Theorem 3.23. For G a graph of treewidth k,

χg(G) ≤ 3k + 2

Proof. Suppose G is a graph of treewidth k. Without loss of generality assume that G is
maximal, that is G is a k-tree. Let ({X1, X2, . . . , Xn}, T ) be a tree decomposition of G with
width k. As G is a k-tree each Xi is a clique such that |Xi| = k + 1.

Let v be a vertex in G. It suffices to show r(v, L,G) ≤ 3k + 1.

Note that by lemma 3.22 for all v ∈ V (G), d+(v) ≤ k.

Let Z ⊂ N−[v] and {X,Y } a partition of Z such that X ⊂ N−[v] and Y ⊂ N−(v).

Consider a matching M : X → V +(v). Let (a, b) be an edge in M . N+(a) is a clique
and v ∈ N+(a). Thus b is adjacent to v. Therefore X = rng(M) ⊂ N+(v). Therefore
|X| ≤ |N+(v)| ≤ k.

Consider a matching N : Y → V +[v]. Let (a, b) be an edge in N . Note that N+(a) is a
clique and v ∈ N+(a), thus b is adjacent to v. Therefore Y = rng(N) ⊂ N+[v]. Therefore
|Y | ≤ |N+[v]| ≤ k + 1.

m(v, L,G) ≤ |Z| = |X|+ |Y |. Therefore by definition of rank

r(v, L,G) = d+(v) +m(v, L,G) ≤ 3k + 1

3.3.4 Extending the Activation Strategy

The Activation Strategy works well for the (1, 1)-marking game but needs modifying to be
used in the more general (a, b)-marking game. We will look at two different extensions. The
first was introduced by Kierstead and Yang 2005 [13]. Their strategy is called the Harmonious
Strategy. The second extension we will consider was introduced by Yang and Zhu 2008 [21].
This strategy is called the Asymmetric Activation Strategy and is built on work stemming
from the Harmonious Strategy.
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For a graph G = (V,E) let Π(G) be the set of all linear orders of V , and let ∆∗(G) =
minL∈Π(G) ∆+(GL). That is ∆∗(G) is the smallest maximum out-degree in all the induced
directions of G. In a directed graph G = (V,E) for any vertex v we have,

� The set of out-edges, E+(v) = {(v, u) ∈ E}

� The set of in-edges E−(v) = {(u, v) ∈ E}

The Harmonious Strategy presented here has been modified to make it more like the Activa-
tion Strategy. As stated in Kierstead and Yang 2005 [13] the Harmonious Strategy involves
tracking contributions between vertices. We have modified it so that we track activated edges.
By doing this we can more clearly see that the Harmonious Strategy is an extension of the
Activation Strategy. We summarise the main ideas of the Harmonious Strategy as follows.

As part of the Harmonious Strategy Alice keeps of track of a set of activated edges A. A edge
is activated by adding it to A. Fix a linear ordering L on the vertices on a graph G = (V,E)
and denote the directed graph induced by L on G, GL. suppose that Bob has just marked a
vertex u. Alice plays the Harmonious Strategy by performing the following steps a times.

1. Alice selects, y, the least unmarked out-neighbor of u such that the edge (u, y) ∈ E(GL)
has not yet been activated. She then activates the edge (u, y). If there is no such vertex
then she marks the L-least unmarked vertex.

2. Alice repeats step (1) on u until she reaches at a vertex z that either has no unmarked
out-neighbours or no unactivated out-edges.

3. Alice marks z

The Harmonious Strategy is used in the case the game is very asymmetric, that is ∆∗(G) ≤
a/b. In the case that a/b < ∆∗(G) the Harmonious Strategy is limited, as Alice may not be
able to mark all the out-neighbours of a vertex. This means that there are graphs and linear
orders that the strategy does not work on.

The Harmonious Strategy is used to find upper bounds for the classes of general graphs (G),
planar graphs (P), and outerplanar graphs (Q). Let Gk = {G ∈ C : ∆∗(G) ≤ k}. Some
bounds found using the Harmonious Strategy are as follows.

� If a < k then colg(Gk; a, b) =∞

� If 3 < a then 7 ≤ colg(P; a, 1) ≤ 8

� If 2 < a then 5 ≤ colg(Q; a, b) ≤ 6

More generally, we have the following bound for when Alice uses the Harmonious Strategy.

Theorem 3.24 (Kierstead and Yang 2005 [13]). Let a, b be positive integers and G a graph
with ∆∗(G) = k ≤ a

b . Then if Alice uses the Harmonious Strategy,

colg(G; a, b) ≤ 2k + b+ 1

.

The proof presented here is a modified version of the original proof in [13]. We have modified
the proof to coincide with our modified definition of the Harmonious Strategy.

Proof. Consider any time when Alice has just marked a vertex v and on Bob’s previous turn
he marked x0, . . . , xb. Let u be an arbitrary unmarked vertex. We note, without proof, the
following facts,
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(1) Any unmarked vertex u has the same number of activated in-edges and activated out-
edges.

(2) v has no unactivated out-edges.

(3) At the end of Alice’s turn, every vertex x satisfies the following; all the vertices adjacent
to an activated out-edge of x are marked.

If it still Alice’s turn, then x0, . . . , xb may be adjacent to u and might not satisfy the facts
(1), (2), and (3). If it is Bobs turn then he may be about to mark b vertices neighbouring u.
Thus it suffices to show that u has at most 2k many marked neighbours other than x0, . . . , xb.

By a combination of (2) and (3) for each marked in-neighbour y of u other than x0, . . . , xb
the edge (y, u) is activated. By (1) the number of activated out-edges of u is the same as the
number of marked in-neighbours. Thus, as u has at most k out-neighbours, u has at most 2k
many activated neighbours other than x0, . . . , xb.

The bound we get when using Harmonious Strategy only works on some graphs and linear
orders. This is a problem, but can be fixed. We could modify the strategy for a more general
bound, one such example is the Limited Harmonious Strategy in [13]. Instead, we consider
the Asymmetric Activation Strategy, which does not have this problem. The Asymmetric
Activation Strategy was introduced by Yang and Zhu 2008 [21] as a strategy for the (a, 1)–
marking game. This strategy is a combination of the Harmonious Strategy and the Activation
Strategy.

Informally we summarise the Asymmetric Activation Strategy as follows. Fix a graph G =
(V,E) and a linear order L on V . Suppose that Bob has just marked a vertex u, Alice repeats
the following steps a times to mark a vertices.

1. Alice activates u. If u has no out-neighbours then Alice marks the L-least vertex in V .
Otherwise let z = u

2. Let v be the L-least out-neighbour of z. Alice activates v if v has been activated less
than a times, otherwise she marks v.

3. If v has no out-neighbours then she marks v. Otherwise she lets z = v and repeats 2
until she marks a vertex.

In summary, the primary difference between the original Activation Strategy and the Asym-
metric Activation Strategy is that each vertex is activated a times before it is marked.

Algorithm 3.3 Asymmetric Activation Strategy

1: for i from 1 to a and U 6= ∅ do
2: if ((N+ ∩ U 6= ∅) ∧ (tu > 0)) then
3: v ← minL(N+(u) ∩ U)
4: tu ← tu − 1
5: else
6: v ← minL U

7: while ((N+(v) ∩ U 6= ∅) ∧ (tv > 0)) do
8: t← minL(N+(v) ∩ U)
9: tv ← tv − 1

10: v ← t
11: U ← U \ v
12: Mark the vertex v
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Definition 3.25 (Asymmetric Activation Strategy, [21]). Let G = (V,E) be a graph, U
denote the set of unmarked vertices, and for all v ∈ V let tv = a, track the number of
activations of v. If v has been activated a times then v will have tv = 0. Let L be a
linear order on V , and let GL be the directed graph induced by L on G. For simplicity we
consider the equivalent (a, 1)-marking game where Bob goes first and marks a vertex with
no neighbours. Suppose that Bob has just activated a vertex u, Alice uses algorithm 3.3 to
update the graph and mark vertices.

Consider a graph G = (V,E) and a linear order L on V . We define a loose out-neighbour
of a vertex v as a vertex u such that either u ∈ N+(v) or there exists a vertex z such that
u, v ∈ N−(z) and u <L v.

By using the Asymmetric Activation Strategy on the (a, 1)-marking game we get the following
upper bound for colg(G; a, 1).

Theorem 3.26 (Yang and Zhu 2008 [21]). Fix a graph G = (V,E) and a linear order L
on V . Let GL be the directed graph induced by the linear order L on the graph G such that
∆+(GL) = k > a. Let r be the maximum number of loose out-neighbours of any vertex in V .
If Alice uses the Asymmetric Activation Strategy then

colg(G; a, 1) ≤ k +

⌊(
1 +

1

a

)
r

⌋
+ 2

The following proof is the original from [21]. We present it here in its entirety, unified with
our definitions.

Proof. Fix a graph G = (V,E) and L a linear order on V such that ∆+(GL) = k > a. Let r
be the maximum number of loose out-neighbours of any vertex in V . Suppose that Bob has
just marked a vertex x. Let M denote the current set of marked vertices and U the unmarked
vertices. Let u ∈ U be an arbitrary unmarked vertex. We need to show that u has no more
than k +

⌊(
1 + 1

a

)
r
⌋

+ 2 marked neighbours other than x.

Let S = (N(u) ∩M) \ x. S is the set of marked neighbours of u excluding x. We partition
S into two sets Q and R. Q = N+(u)∩ S is the set of marked out-neighbours of u excluding
x. R = N−(u) ∩ S is the set marked in-neighbours of u excluding x.

Notice that |Q| ≤ k = ∆+(GL).

Fix y ∈ R. Either Alice marked y or Bob did. Alice only marks vertices with ty = 0.

Suppose that Bob marked y. There are two times when we activate vertices, line 3 and line 9
in algorithm 3.3. At line 3, we activate the vertex that Bob has marked. We do this for each
unmarked out-neighbour of y or until y has been activated a times. And, as every vertex has
k > a out-neighbours, x must have ty = 0.

So, regardless of who marked y, ty = 0.

Let z = minL(N+(y) ∩ U), be the next vertex activated after y. Note that u ∈ N+(y) ∩ U
and so z is either a loose out-neighbour of u or u = z. Note that if u is activated immediately
after y the next activated vertex is in N+(u), which is a set of loose out-neighbours of u.
Hence the next activated vertex is a loose out-neighbour of u. Let nu be the number of loose
out-neigbours of u. Any vertex can be activated at most a+ 1 many times. So we have

a|R| ≤ (a+ 1)nu ≤ (a+ 1)r

Therefore,
|S| = |Q|+ |R| ≤ k + |R| ≤ k + (1 + 1/a)r
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3.3.5 Refined Activation Strategy

The Refined Activation Strategy is a refinement on the Activation Strategy introduced by
Xuding Zhu in [23]. The Refined Activation Strategy is used to find the current best upper
bound for the (1, 1)-marking game for the class of planar graphs.

Theorem 3.27 (Theorem 1, Zhu 2008 [23]). If G is a planar graph, then

colg(G) ≤ 17

We will not provide a full proof of this theorem, but rather will we describe the broad strokes
behind the Refined Activation Strategy for a graph G.

The refined Activation Strategy applies the same basic strategy as the standard Activation
Strategy but with two main differences. First, instead of a linear ordering on V (G) we use
directed graph, L0, on V (G) as our ordering. This is only a partial ordering, and so we
partition V (G) into blocks B1, B2, . . . , Bi, where if x ∈ Bi, y ∈ Bj and i < j then the edge
(x, y) is in L0. The ordering may not be a linear ordering in each block. But, if we ignore
what happens in each block we get a linear ordering between blocks.

The second change is the inclusion of a preference function ρ that maps each y ∈ V (G) to
a non-empty subset of the L0-out-neigbours of y that are not in the same block as y. The
preference function determines which unmarked out-neighbour of y is least. The preference
function also determines if and when the edges in L0 change direction. Suppose we have just
activated a vertex v. Let w be the L0-least out-neighbour of v. If there is a u ∈ V (G) such
that there is a directed edge (u,w) ∈ L0 where w is in ρ(u)∩Bi for some i then we reverse the
direction of the edge (u, v) in L0. So, within the blocks the ordering changes as the marking
game is played.

In summary the refined Activation Strategy is played as follows. During the strategy Alice
tracks a set of activated vertices, A, and a preference function ρ.

1. Alice starts by marking the least v in L.

2. On her next turn let u be the last vertex marked by Bob. Alice starts at u activates it
and moves to w the L0-least unmarked neighbour of u determined by ρ.

3. Alice reverses an edge (v, w) ∈ L0 as determined above.

4. If w is activated or has no unmarked neighbours then Alice marks w. If not Alice
repeats step (2) on w until she either finds an active vertex.
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Chapter 4

Conclusion

4.1 Summary

In this report we have studied a variety of different games and strategies. In our study of the
dominating game we found both upper and lower bounds for the game dominating number.
The upper bound was found by the way of a simple strategy for Alice. The lower bound was
found by exploiting a property of tight bounds for the dominating number. For the class
of trees we demonstrated two different strategies for Alice and their relationship with the
3/5-conjecture (conjecture 2.11). We concluded our study of the dominating game with a
look at the (a, b) variant. In which we extended a previous result to get a new upper bound
of for the (a, b)-dominating number. To conclude chapter 2 we studied the independent
dominating game. While slightly shorter than the other sections, it touched on most areas
in the literature.

Our look at the colouring game was divided into two main parts; lower bounds for the
colouring game, and upper bounds by the way of the marking game. The lower bounds for
which came virtue of some new extensions of previous results to the (a, b)-colouring game.
The marking game is the largest section in this report. Most of this time was spent looking at
the Activation Strategy and variations thereof. As part of our studies we provided two new
proofs for graphs of bounded treewidth and pathwidth. We then showed how the activation
strategy can be modified for the (a, b)-marking game. We concluded our study of the marking
game with a brief look at the refined activation strategy.

4.2 A Java Implementation of The Colouring Game

As part of the background of, and to improve our understanding of, we implemented a version
of the colouring game in Java [1]. This implementation took the form of an actual game played
against the computer. The computer takes on the role of Alice and the user plays as Bob.
The game opens by asking the user about the graph they wish to play on; namely, the number
of vertices in the graph, how many colours are available, the width of the graph, and the type
of graph (bounded treewidth or bounded pathwidth). A graph with the specified properties
is then randomly generated. Once the game starts, the computer uses the activation strategy
in an attempt to win the colouring game.

Applications of this game include as a study tool and a proper game. Because of the nature
of the colouring game if the user does not give themselves enough colours the game is un-
winnable. This unwinnable nature serves as a useful learning tool. By losing to the computer
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we are able to get a better understanding of the strategy as a whole. Conversely, an under-
standing of the activation strategy allows the user to win (assuming there are not too many
colours). This is because the user can strategically pick vertices that force the computer to
make certain moves. A desire to win would motivate the user to gain further understanding
of the Activation Strategy. A useful property in a study tool.

This implementation could easily be extended into a full fledged application and released to
the public. Such an extension would be a game that secretly teaches people mathematics, and
more specify graph theory. There is potential here to include other strategies and other graph
games. The other games are strategies studied in this report would make excellent additions.
As an example, the Refined Activation Strategy for planar graphs would introduce a unique
challenge to the game.

4.3 Other Games

We conclude this report by taking a brief look at some games that we would have loved to
include, but did not have the time to. They are the total domination game, the perfect code
game, and online colouring graphs of bounded pathwidth.

The total domination game is another variation of the domination game. Alice and Bob
take turns building a total dominating set D in a graph G = (V,E). A total dominating
set is a dominating set D such that every vertex in D is adjacent to another vertex in D.
So on their turn Alice and Bob add a vertex v to D such that N [D] increase is size and
v is adjacent to at least one vertex in D \ v. The game ends when D forms a dominating
set. The total dominating game is a relatively recent creation. The introductory paper [9]
was only published in 2015. As every total dominating set is a dominating set the total
dominating game bounds the dominating game. This gives some relation between the two
versions. However, the two game do differ in many ways. Exactly how the games differ is
something we would have loved to include, but didn’t have the time to.

A perfect code in a graph G = (V,E) is an independent subset C of V such that every vertex
in V is either in C or adjacent to exactly one vertex in C. In the perfect code game Alice and
Bob take turns adding a vertex to C such that C forms a partial perfect code. The game
continues until C forms a perfect code, or cannot be enlarged further. If at the end on the
game C is a perfect code then Alice wins, and Bob wins if C is not a perfect code. Some
graphs do not admit a perfect code. On such graphs Alice will never win. There are other
graphs that admit perfect codes but on which Bob will always win. This raises the question,
on which classes of graphs can Alice win? We can also ask, how small can Alice force the
perfect code to be? These are the sorts of questions that could motivate further research.

When online colouring a graph, a single vertex is revealed along with its relation to all
previously revealed vertices. The revealed vertex is then assigned a colour. How many
colours do we need to online colour a graph? A graph of pathwidth k can be online coloured
using 3k + 1 colours [11]. We also have, when playing the colouring game on an interval
graph with width k Alice will always win if the number of available colours is at least 3k+ 1
(theorem 3.19). It is quite a coincidence that these two concepts have the same bound on
the same class of graphs. It gets even weirder when you consider the fact that the bound for
the colouring game was not found using the colouring game. Exactly why these bounds are
the same is unknown.
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