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Abstract

The study of braids and the braid group is a vast topic. This report introduces
the basic ideas of braids and the braid group. This report is aimed at anyone with
little to no knowledge of braids but who has some understanding of knot theory.
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Chapter 1

Introduction

Braids can be found everywhere from a school girls hair, a French pâtisserie, to the ringing of
church bells. They are a ubiquitous part of life. You could go into almost any primary school
and you find school children playing with braids. Weather they are braiding each others’ hair
or making brackets. In a pâtisserie you will find many wonderful breads and pastries made
using braids. And in the ringing of church bells braids are used to describe the sequence of
the bells. Braids have a geometric beauty to them. It is their ubiquity and beauty that make
braids of great interest to the both layperson and mathematician alike.

Braid groups first appeared in a disguised form by Hurwitz 1891 [8]. And were first formally
introduced by Artin 1925 [3]. This early study was interest was not enough to inspire much
further research. It was not until mid to late 20th century that braids came back into the Lyme
light. It was while studying new representations of the braid group in 1987 that Vaughan
Jones discovered the famous Jones’ polynomial [9]. Jones’ discovery has lead to a strong
increase in the study of the braid group. In more recent years the study of braids has lead to
many interesting applications including the stirring of fluids with sticks, [5] and theoretical
physics where applications of braids help generalise the spin of subatomic particles.

The study of braids is vast, and we cannot even hope to cover more than a mere morsel. The
purpose of this report is to provide a brief introduction into braids, the braid group, and their
connection to knots. In this report we begin by defining braids and braid words. We then
introduce and define the braid group. Next we show how knots and braids are interconnected
by introducing Alexander’s theorem and Vogel’s algorithm. Finally, we conclude by examining
two applications of braid theory.
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Chapter 2

Braids

2.1 What is a braid

Consider two horizontal bars, with n strands between them. The strands start at the points
A1, . . . , An on the top bar and move continuously downwards towards the points A′1, . . . , A

′
n.

The strands may cross over and under each other, but they may not move upwards. For
example Figure 2.1 is not a braid as the leftmost strand moves upwards to form a loop. A
braid with n strands is called an n–braid. The trivial braid is a special braid where each
A1, . . . , An is connected to A′1, . . . , A

′
n respectively.

Definition 2.1 (n–braid). Fix n > 0 a natural number. Let X,Y be two parallel planes in
3–space. An n–braid is an embedding of n disjoint non–self–intersecting curves into 3–space
such that any plane that is parallel to X and Y and between X an Y passes through each
curve exactly once.

The 2D representation of a braid is called the braid projection, for example figure 2.2 is the
projection of the trivial braid.

A1 A2 A3 A4

A′1 A′2 A′3 A′4

Figure 2.1: Not a braid

A1 A2 A3 A4

A′1 A′2 A′3 A′4

Figure 2.2: The trivial 4–braid

We consider two braids to be the equivalent if there is a continuous deformation of the
strands, without passing any of the strands through each other, such that each braid can be
transformed into the other. For example in figure 2.3 there are two projections that represent
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the same braid.

A1 A2 A3 A4

A′1 A′2 A′3 A′4

A1 A2 A3 A4

A′1 A′2 A′3 A′4

Figure 2.3: Two projections of the same braid

2.2 Braid words

An alternative way to define braids is to build them from single crossings. There are two
types of crossings. A left over right called a σi crossing where we take ith strand and move it
over the (i+ 1)th strand. And a right over left crossing, σ−1i , where we take (i+ 1)th strand
and move it over the ith strand.

A1 A2 A3 A4

A′1 A′2 A′3 A′4

Figure 2.4: A σ2 crossing

A1 A2 A3 A4

A′1 A′2 A′3 A′4

Figure 2.5: A σ−12 crossing

We can now define braids by building up σi and σ−1i crossings. An ordered string of σi’s and
σ−1i ’s is called a braid word and uniquely defines a braid projection. For example figure 2.6
represents the braid word σ−12 σ−13 σ3σ1σ

−1
1 .

A1

A2

A3

A4

A′1

A′2

A′3

A′4

σ−12

σ−13
σ3

σ1 σ−11

Figure 2.6: A braid
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Braid words provide us with a simple way of describing braids. For example if you wanted
to describe the sequence of steps necessary to 3 strand braid your hair you would describe it
as the braid word of the form σ−11 σ2 · · · .

A1

A2

A3

A′1

A′2

A′3

Figure 2.7: A 3 strand plait

It is clear that some braid words represent the same braids. Consider the 4–braids in figure
2.8, clearly they are the same braid. But, they have different braid words. Figure 2.8a has
the braid word σ1σ3 whereas figure 2.8b has the braid word σ3σ1.

A1

A2

A3

A4

A′1

A′2

A′3

A′4

(a)

A1

A2

A3

A4

A′1

A′2

A′3

A′4

(b)

Figure 2.8: Two equivalent braids with different braid words

We can also see that the two braids in figure 2.9 are equivalent. We can get from (a) to (b) be
shifting the A2 strand through the crossing. Figure 2.9a has the braid word σ1σ2σ1 whereas
figure 2.9b has the braid word σ2σ1σ2.

A1

A2

A3

A′1

A′2

A′3

(a)

A1

A2

A3

A′1

A′2

A′3

(b)

Figure 2.9: Two more equivalent braids with different braid words

We can also see from figure 2.10 that sequence σiσ
−1
i just undoes the crossing.
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A1

A2

A′1

A′2

(a)

A1

A2

A′1

A′2

(b)

Figure 2.10: Another two equivalent braids with different braid words

These operations can be formalised as follows.

(i) σiσj = σjσi if |i− j| > 1

(ii) σiσi+1σi = σi+1σiσi+1

(iii) σiσ
−1
i = e

These operations also hold for their inverses. For example σ−11 σ−13 = σ−13 σ−11 . In fact these
operations are sufficient to show that two braid words represent equivalent braids [4]. In
other words if B1 and B2 are braid words that represent equivalent projections then there
exists a finite sequence of (i), (ii), and (iii) operations that transform B1 into B2 and vice
versa.
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Chapter 3

The Braid Group

3.1 What is a group?

Definition 3.1. A group (X, ·) is a set, X, endowed with a binary operation, ·, that satisfies
the following axioms.

(i) Closure: If A,B ∈ X then A ·B ∈ X

(ii) Associativity: For all A,B,C ∈ X (A ·B) · C = A · (B · C)

(iii) Identity: There exists an element I ∈ X such that for all A ∈ X I ·A = A · I = A

(iv) Inverse: For every element A ∈ X there exists an A−1 ∈ X such that AA−1 = A−1A =
I

3.2 Braids as a group

Consider the set of all braids with n strands and denote this set Bn. We endow Bn with
the binary operation · as follows. Let A and B be braids with n strands. A · B is the
braid obtained glueing the top bar to B to the bottom bar A. Alternatively if A and B
are braid words then A · B is the braid word of B appended to the end of A. For example
σ2σ3 · σ1σ2 = σ2σ3σ1σ2. To show that Bn is a group we need to show that · satisfies the
group axioms. Note that we call A ·B the product of A and B.

We can see that Bn is closed under · as the result is clearly a braid with n strands.

Let A = a1a2 · · · ai, B = b1b2 · · · bj , and C = c1c2 · · · ck be n–braid words in Bn.

(A ·B) · C = (a1a2 · · · ai · b1b2 · · · bj) · c1c2 · · · ck
= (a1a2 · · · aib1b2 · · · bj) · c1c2 · · · ck
= a1a2 · · · aib1b2 · · · bjc1c2 · · · ck
= a1a2 · · · ai · (b1b2 · · · bjc1c2 · · · ck)

= a1a2 · · · ai · (b1b2 · · · bj · c1c2 · · · ck)

= A · (B · C)

Therefore the product of A,B, and C is associative. This can also be seen by the example in
figure 3.1 where we take the product of three 3–braids.
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A B C

Figure 3.1: Assoctiativity of braids

The identity braid I in Bn is the trivial braid with n strands. This is because appending
the trivial braid to any other braid doesn’t introduce any new twists and hence is the same
braid. This can be seen in figure 3.2.

I A I

Figure 3.2: Identity braid

Let A be an n-braid. The inverse of A, A−1 is defined by mirroring A along one of its ends. In
braid word terms, if A = a1a2 · · · an then A−1 = a−1n a−1n−1 · · · a

−1
2 a−11 . This can be visualised

by the example in figure 3.3. From the braid words of A and A−1 it is quite easy to see that
all the terms will cancel, and we will be left with the identity. It is also not too difficult to
see why this works by figure 3.3.

A−1 A A−1

Figure 3.3: Inverse braid

3.3 Generators and Relations

In chapter 2 we stated that the following operations were enough to show equivalence of any
two braids.

(i) if |i− j| > 1 then σiσj = σjσi
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(ii) σiσi+1σi = σi+1σiσi+1

(iii) σiσ
−1
i = ∅

In terms of the braid group Bn all the equations of the form (i) and (ii) are called the
relations of the braid group. For example the braid group B3 has the relations σ1σ3 = σ3σ1,
σ1σ2σ1 = σ2σ1σ2, and σ2σ3σ2 = σ1σ2σ3. Two elements of the braid group are equal if there
is a sequence of relations that convert one to the other.

We do not consider (iii) to be a bona fide relation. We also have the relation σiσj = σiσj ,
but again we do not consider this a bona fide relation. These two relations are called the
trivial relations.

Definition 3.2. Let (X, ·) be a group. A generator for X is a subset A of X such that every
element in X can be built by products of elements in A.

In terms of the braid group Bn the braids σ1, σ2, . . . , σn−1 and their inverses can be combined
in a way that generates the entire group and hence known as the generators for Bn.

We can now express the braid group Bn in terms of its generators and relations, [4]. That is,

Bn =

(
σ1, σ2, . . . , σn−1

∣∣∣∣∣σiσj = σjσi |i− j| > 1

σiσi+1σi = σi+1σiσi+1 i ∈ {1, . . . , n− 1}

)
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Chapter 4

Knots as braids

4.1 Knots and Links

The simplest way of think a knot is simply as a knotted loop of string. Formally a knot is a
closed non–self–intersecting curve in 3–space. A link is the union of multiple disjoint knots.
Each knot that forms part of a link is called a component of the link. The projection of a
knot or link is a representation of the knot or link onto the plane. Figure 4.2 is an example
of a knot and figure 4.3 an example of a link. The trivial knot is the knot with no crossings,
figure 4.1, the trivial link with n components is the union of n trivial knots.

Figure 4.1:
The trivial knot

Figure 4.2:
The trefoil knot

Figure 4.3:
The Hoph link

An orientation of a link is defined by choosing a direction to travel around each component
in the link. We call such a link an orientated link.

As with braids we consider two links (or knots) to be the same if there is a continuous
deformation from one to the other such that the strands do not cross.

4.2 Closed Braids

Consider an n–braid, B. We close B by connecting A1, . . . , An to A′1, . . . , A
′
n with a series

of parallel strands travelling outside the braid. The link K formed in this way is the closure
of the n–braid B and is called a closed braid. It is easy to see how this forms a link by
considering figure 4.4.
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A1 A2 A3 A4

A′1 A′2 A′3 A′4

Figure 4.4: A closed braid

We now have an easy way to convert braids into knots. The converse is not as obvious, but
every link can be converted into a braid. This was first shown in 1923 by J. W. Alexander.

Theorem 4.1 (Alexander 1923 [1]). Given any link then it is equivalent to some closed braid.

A complete proof of theorem 4.1 is beyond the scope of this report. But we provide an
algorithm that generates a closed braid from any given link.

4.3 Vogel’s Algorithm

Introduced in Vogel 1990 [13] Vogel’s algorithm provides us with a simple procedure of gen-
erating closed braids from links. That is for any link K Vogel’s algorithm finds a braid whose
closure is K. Hence a proof of Vogel’s algorithm is a proof of theorem 4.1. Again a full proof
is beyond the scope of this report. The following explanation is derived from [7], where a
complete proof can be found.

We summarise the algorithm as follows. Let K be a link and fix a projection of K.

Step 1: Orientate the link, K.

Step 2: Let P be a point in K such that all the strands bordering the region containing P
travel in the same direction.

Step 3: Move a strand that travels counter to the region about P over the entire link.

Step 4: Repeat until all the strands travel in the same direction.

Step 5: Cut the link radiating outwards from P to form a braid.

Now for a complete walk–through with an example. Let K be an link and fix a projection.
If K is not oriented then we assign an arbitrary orientation to all the components of K. Let
P a point inside the link such that all the strands bordering the region containing P travel
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in the same direction. As an example we will consider the figure 8 knot in figure 4.5. The
goal is to have all the strands in the link travelling around P in the same direction, either
clockwise or anticlockwise.

P

Figure 4.5: An oriented figure 8 knot

We define a troubled section as a strand of the link that is oriented in the direction opposite
to our chosen orientation. In figure 4.6 the troubled section for the figure eight knot is
highlighted red. To remove a troubled section we move it over the rest of the link and the
point P . This can be represented in the projection as a series of Reidemeister moves and
hence the new projection is equivalent to the old one.

P

Figure 4.6: A troubled section

P

Figure 4.7: Resolved trouble section

We keep shifting troubled sections over the link. Each time we remove a troubled section the
total number of such sections goes down and therefore eventually all the strands will travel
around P in the same direction.
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P

Figure 4.8: A slice in the knot Figure 4.9: The braid of the figure 8 knot

Once all the strands travel clockwise (or counter clockwise) we slice the link from P outwards.
The ends of the cut strands become the ends of the braid.

4.4 Markov moves

In Vogel’s algorithm the next troubled section we remove is chosen arbitrarily. So we may
get different braids whose closures are the same link. This raises the question, which braids
represent the same links? The Markov solve this problem by introducing a pair of operations
that change the braid but not the link represented.

Definition 4.2. Let B = be an n–braid.

(i) A type I Markov move takes B to αBα−1, where α is an n–braid.

(ii) A type II Markov move takes B to Bσn or Bσ−1n .

A1 A2 An

A′1 A′2 A′n

α

α−1

B

. . .

. . .

A1 A2 An

A′1 A′2 A′n

B

. . .

. . .

Figure 4.10: Type I Markov move

By using Markov moves we can find equivalences between braids and their link representation.
This was first discovered in Markov 1936 [11], and hence we have the theorem 4.3.

Theorem 4.3 (Markov’s theorem [11]). Two braids represent the same link if and only if
the braids are equivalent or there if a series of Markov moves from one to the other.
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A1 A2 An

A′1 A′2 A′n

An+1

A′n+1

B

. . .

. . .

A1 A2 An

A′1 A′2 A′n

B

. . .

. . .

Figure 4.11: Type II Markov move

A full proof of theorem 4.3 is beyond the scope of this report. But we provide some intuition
for why Markov moves don’t change the associated knot. Fix some braid B. If we apply a
type I Markov move to B we get αBα−1 as our new braid. We can close the braid to find the
associated link. However, when we do this α and α−1 are now connected and so cancel out,
leaving us with the closure of B. If we apply a type II Markov move to B we have added a
single twist to the link represented by B. Twists can be undone without changing the link.
Hence B represents the same link before and after a type II Markov move.
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Chapter 5

Applications

5.1 Change ringing

All over the world church bells are used to call people to worship, in celebration, and remem-
brance. Change ringing is a particular form of bell ringing. In change ringing each bell is
attached to a large wheel and is rung by a ringer (a person who rings bells) by pulling a rope
attached to the wheel. By attaching the bells to wheels it allows the bells to be swung in a
full circle and back again. The wheels also give ringers far greater control over the bells.[6]

The Bells are numbered from sequentially, with 1 being the lightest bell and the bells getting
progressively heaver as the number increases. A row is any permutation of the bell numbers.
For example with 6 bells 254163 and 123564 are both rows. When a row is rung the bells
are rung from left to right. As the bells are on wheels they have a natural period to them.
This means that a row can only be altered by swapping any two adjacent bells in the row,
known as a change. For example 123456 → 123465 is a valid change but 123456 → 612345
is not. A sequence of changes define a method and describes a tune to be played. A method
that starts and ends in order and every permutation is played no more than once is known
as a extent. For example with 3 bells figure 5.1 is an extent. We can represent this method
pictorially as a braid as in figure 5.2. [10]

123

213

231

321

312

123

Figure 5.1: A 3 bell method

1 2 3

1 2 3

Figure 5.2: Braid representation
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We can arbitrarily choose crossings as the type of crossing makes no difference for methods.
In change ringing the braids are used to define a sequence of permutations. Bell ringers are
interested in generating new extents. But the restrictions to extents makes generating new
pieces of music is a non–trivial problem. But by representing extents as braids we reduce the
problem to a problem on braids.

5.2 Public Key Cryptography

In Symmetric key encryption users use the same key to both encrypt and decrypt data,
this is the most common form of encryption. In public key encryption two different keys
are used, one to encrypt the data (the public key) and a second secret key to decrypt the
data (the private key). Once the data has been encrypted using the public key it cannot be
decrypted without knowing the private key. This allows secure sending of data over public
networks. One common use of public key encryption is to securely distribute encryption keys
to users. We present one such approach by Unit 2005 [12] to private key distribution using the
conjugacy problem of the braid group. This approach was first seen in Iris Anshel, Michael
Anshel and Dorian Goldfeld 1999 [2].

Definition 5.1 (Conjugacy Problem). Let x, y be elements of the braid group Bn. The
conjugacy problem asks, is there a z ∈ Bn such that x = z−1yz.

The conjugacy problem is, in general, difficult. That is there is no known algorithm that can
solve the conjugacy problem in polynomial time.

Suppose Alice and Bob wish to send encrypted messages to each other. Alice and Bob fix
some integer n and choose some arbitrary subsets of Bn as follows,

SAlice = {a1, a2 . . . , am}, SBob = {b1, b2, . . . , bl}

SAlice and SBob become the public keys, and a freely distributed.

Alice and Bob choose secret elements a ∈ SAlice and b ∈ SBob respectively. Alice then
transmits the elements

a−1b1a, a
−1b2a, . . . , a

−1bla

Similarly Bob transmits the elements

b−1a1b, b
−1a2b, . . . , b

−1amb

Alice and bob can now calculate the elements b−1ab and a−1ba respectively. This allows them
both to calculate a−1bab−1, which becomes their shared private key.
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